IPO

: Interior-point Policy Optimization under Constraints

Trust RL 사이드 프로젝트 논문리뷰 스터디

> 2024.10.06 이정연

Introduction

제약(Constraint)과 함께 RL을 정의: Constrained Markov Decision Process (CMDP)

- 1999년도 발표된 논문에서 시작
- 2가지 종류의 제약이 있음
 - instantaneous constraint
 - 일시적인
 - 각 timestep마다 실행된 action에 의한 제약
 - **cumulative** constraints
 - 누적적인
 - 특정 시간 동안(e.g. 해당 episode length동안) 누적되어 계산된 제약
 - IPO논문에서는 cumulative constraints의 **discounted cumulative constraints와 mean valued constraints**에 초점을 맞춰 진행

일반적으로 CMDP를 어떻게 풀고 있었나?

- Lagrangian relaxation method
 - o 최적화 식의 목적 함수에 해당하는 **라그랑주 승수(Lagrange multipliers)로 가중치를 둔 제약 함수들의 합**을 추가
 - 라그랑주 승수는 제약 조건을 만족시키기 위해 dual problem에서 업데이트

Introduction

앞서 Constrained policy optimization (CPO)가 CMDP를 풀기 위해 제안 되었었다.

- TRPO에서 제약 조건들을 만족하기 위해 확장된 아이디어
- 제약조건들이 한번만 만족되면, 모든 training 과정에서 제약 조건의 만족이 성립
- 하지만 이차미분을 계산해야 하는 계산적 어려움이 있었음
- mean valued constraints를 다룰 수 없음
- 여러개 constraints들을 다룰 수 없음

그렇다면 IPO는?

- 1차 최적화
- 다양한 누적 제약 조건들을 포함할 수 있음
 - 목적식에 제약들을 포함시키기 위해 logarithmic barrier function 사용
 - 제약 조건이 만족되면 보상 함수에 추가되는 페널티는 0
 - 제약 조건이 만족되지 않으면 패널티는 -무한
- PPO를 활용하여 trust region 성격을 반영

Preliminaries

Constrained Markov Decision Process (CMDP)

사실상 reward랑 매우 비슷한 constraint $C: S imes A imes S \mapsto \mathbb{R}$

$$C: S imes A imes S \mapsto \mathbb{R}$$

several cost functions
$$\widetilde{C_i} = f(C(s_0, a_0, s_1)), \ldots, C(s_n, a_n, s_{n+1}))$$
 (n:transition $\dot{\gamma}$, t-th)

constraint **limits** $\epsilon_1, \ldots, \epsilon_m$ (m:constraint 종류 가짓수, i-th)

Expectation over a constraint $J_{C_i}^{\pi_{m{ heta}}} = \mathbb{E}_{ au \sim \pi_{m{ heta}}} \left| \widetilde{C_i} \right|$

$$J_{C_{m{i}}}^{\pi_{m{ heta}}} = \mathbb{E}_{ au \sim \pi_{m{ heta}}}\left[\widetilde{C_{m{i}}}
ight]$$

$$J_{C_i}^{\pi_{ heta}} = \mathbb{E}_{ au \sim \pi_{ heta}} \left[\sum_{t=0}^{\infty} \gamma^t C\left(s_t, a_t, s_{t+1}
ight)
ight]$$
 discounted cumulative constraint

$$J_{C_i}^{\pi_{ heta}} = \mathbb{E}_{ au \sim \pi_{ heta}} \left[rac{1}{T} \sum_{t=0}^{T-1} C\left(s_t, a_t, s_{t+1}
ight)
ight] \quad ext{mean valued constraint}$$

Goal

$$\max_{ heta} J_R^{\pi_{ heta}}$$

$$J_{C_{m{i}}}^{\pi_{m{ heta}}} \leq \epsilon_{m{i}}$$

Preliminaries

Goal

Policy Gradient Methods

 $egin{aligned} \max_{ heta} J_R^{\pi_{ heta}} \ ext{s.t.} & J_{C_i}^{\pi_{ heta}} \leq \epsilon_i \end{aligned}$

gradient of the objective

$$abla J_R^{\pi_{ heta}} = \mathbb{E}_t \left[
abla_{ heta} \log \pi_{ heta} \left(a_t \mid s_t
ight) A_t
ight]$$

Trust Region Policy Optimization (TRPO)

$$egin{aligned} \max_{ heta} L^{TRPO}(heta) &= \mathbb{E}_t \left[rac{\pi_{ heta}(a_t | s_t)}{\pi_{ heta_{old}}(a_t | s_t)} A_t
ight] \ ext{s.t.} & \mathbb{E}_t \left[KL \left[\pi_{ heta_{old}} \left(a_t \mid s_t
ight), \pi_{ heta} \left(a_t \mid s_t
ight)
ight] \leq \delta \end{aligned}$$

Proximal Policy Optimization (PPO)

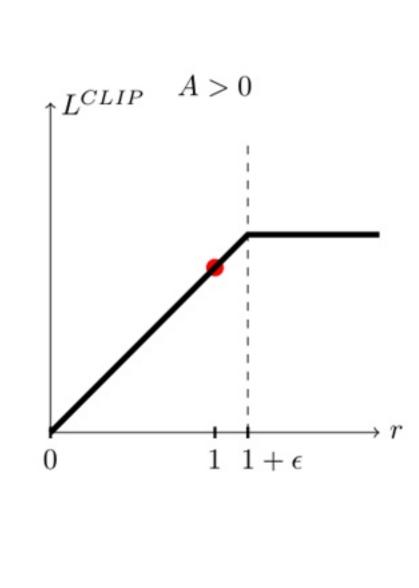
$$egin{aligned} \max & L^{CLIP}(heta) \ &= \mathbb{E}_t \left[\min \left(r_t(heta) A_t, \operatorname{clip} \left(r_t(heta), 1, 1 - \epsilon, 1 + \epsilon
ight) A_t
ight)
ight] \ & r_t(heta) = rac{\pi_{ heta} \left(a_t \mid s_t
ight)}{\pi_{ heta_{ ext{old}}} \left(a_t \mid s_t
ight)} \end{aligned}$$

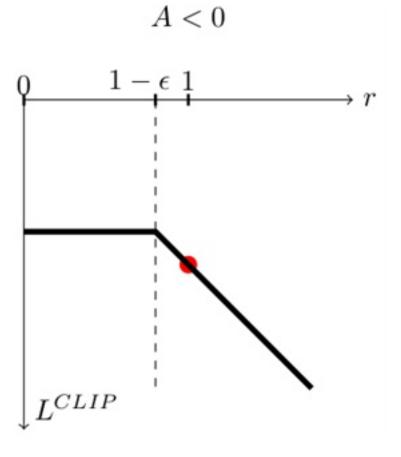
 $A_{\scriptscriptstyle R}^{\pi_{ heta}}(s,a) = Q_{\scriptscriptstyle R}^{\pi_{ heta}}(s,a) - V_{\scriptscriptstyle R}^{\pi_{ heta}}(s)$

Trust Region Policy Optimization (TRPO)

KL DIVERGENCE INFORMATION GAIN **OLD POLICY** action probability **NEW POLICY** actions (a) $D_{KL}(\pi||\pi') = \pi(a)log\frac{\pi(a)}{\pi'(a)}$

Proximal Policy Optimization (PPO)





Interior-point Policy Optimization

Interior-point Policy Optimization

Problem Deifinition

$$egin{array}{c} \max_{m{ heta}} L^{CLIP}(m{ heta})$$
 PPO의 목적식 $\mathbf{s.t.}$ $J^{m{\pi_{ heta}}}_{C_{m{i}}} \leq \epsilon_{m{i}}$ $\widehat{J}^{m{\pi_{ heta}}}_{C_{m{i}}} = J^{m{\pi_{ heta}}}_{C_{m{i}}} - \epsilon_{m{i}}$

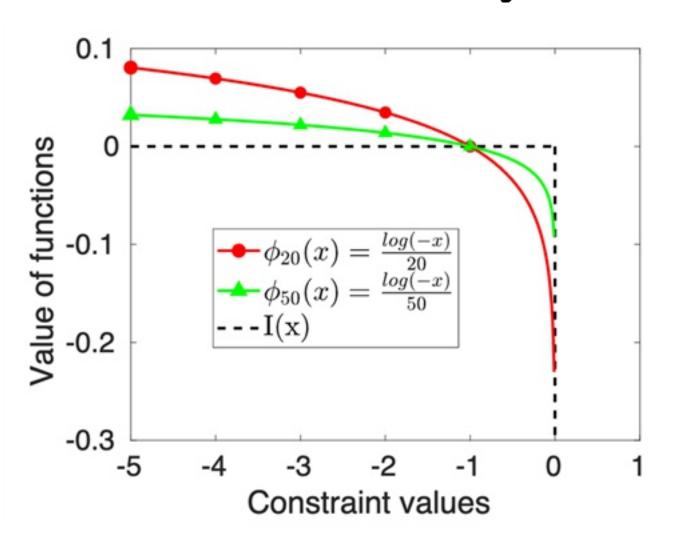
Indicator Function
$$I\left(\widehat{J}_{C_i}^{\pi_{\theta}}\right) = egin{cases} 0 & \widehat{J}_{C_i}^{\pi_{\theta}} \leq 0 \ -\infty & \widehat{J}_{C_i}^{\pi_{\theta}} > 0 \end{cases}$$

logarithmic barrier function

: differentiable approximation of the indicator function

$$\phi\left(\widehat{J}_{C_{m{i}}}^{m{\pi_{m{ heta}}}}
ight) = rac{\log\left(-\widehat{J}_{C_{m{i}}}^{m{\pi_{m{ heta}}}}
ight)}{m{t}}$$
 *hyperparamete

$$\phi(x) = \frac{-\log(-x)}{t}$$



The larger t is, the better the approximation is to the indicator function

Interior-point Policy Optimization

그래서 정리된 IPO의 objective Function

$$egin{aligned} &\max_{ heta} L^{IPO}(heta) \ &L^{IPO}(heta) = L^{CLIP}(heta) + \sum_{i=1}^m \phi\left(\widehat{J}_{C_i}^{\pi_{ heta}}
ight) \end{aligned}$$

Algorithm 1 The procedure of IPO

Input: Initialize policy π with parameter $\theta = \theta_0$. Set the hyperparameter r for PPO clip rate and t for logarithmic barrier function

Output: The policy parameters θ

- 1: Initialize the computational graph structure.
- 2: for iteration k=0,1,2,... do
- 3: Sample N trajectories $\tau_1, ..., \tau_N$ including observations, actions, rewards and costs under the current policy θ_k
- Process the trajectories to advantages, constraint values, etc
- Update the policy parameter with first order optimizer $\theta_{k+1} = \theta_k + \alpha \nabla_{\theta} L^{IPO}(\theta)$ where α is learning rate based on the processed trajectories.
- 6: end for
- 7: **return** policy parameters $\theta = \theta_{k+1}$

Performance Guarantee Bound

그렇다면 IPO의 성능 보장을 이론적으로 검증해보자.

Maximization을 Minimization으로 바꾸기 위해 (-) 붙이기

$$\min_{ heta} - L^{CLIP}(heta)$$
 s.t. $\widehat{J}^{\pi_{ heta}}_{C_i} \leq 0$

1 Minimization 버젼의 IPO 목적식

$$\min_{ heta} - L^{CLIP}(heta) - \sum_{i=1}^m rac{\log\left(-\widehat{J}_{C_i}^{\pi_i}
ight)}{t}$$

$$2$$
 라그랑지안 방법으로 했을 때 목적식 $L\left(heta,\lambda_{i}
ight)=-L^{CLIP}(heta)+\sum_{i=1}^{m}\lambda_{i}\widehat{J}_{C_{i}}^{\pi_{ heta}}$

dual function
$$g(\lambda_i) = \min_{\theta} -L^{CLIP}(\theta) + \sum_{i=1}^m \lambda_i \widehat{J}_{C_i}^{\pi_{\theta}}$$

Performance Guarantee Bound

마 미분후 optimal
$$\theta \star$$
를 대입 $-\nabla L^{CLIP}\left(\theta^{\star}\right) + \sum_{i=1}^{m} \frac{1}{-t \times \widehat{J}_{C_{i}}^{\pi_{\theta^{\star}}}} \nabla \widehat{J}_{C_{i}}^{\pi_{\theta^{\star}}} = 0$ $y = \log(-x) \Rightarrow y' = -\frac{1}{x}$
$$\lambda_{i}^{\star} = -\frac{1}{t \times \widehat{J}_{C_{i}}^{\sigma_{i}}}$$

$$-\nabla L^{CLIP}\left(\theta^{\star}\right) + \sum_{i=1}^{m} \lambda_{i}^{\star} \nabla \widehat{J}_{C_{i}}^{\pi_{\theta}^{\star}} = 0$$
 치환하고 나니 2 의 미분 형태와 동일 $\lambda_{i} = \lambda_{i}^{\star}$

그렇다면 dual function은 $\lambda_i = \lambda_i^*$ 일 때

$$egin{aligned} g\left(\lambda_{i}^{*}
ight) &= -L^{CLIP}\left(heta^{*}
ight) + \sum_{i=1}^{m} \lambda_{i}^{*} \widehat{J}_{C_{i}}^{\pi_{ heta}} \ &= -L^{CLIP}\left(heta^{*}
ight) - rac{m}{t} \ \lambda_{i}^{*} &= -rac{1}{t imes \widehat{J}_{C_{i}}^{\sigma_{i}}} \end{aligned}$$

$$p^* \geq g(\lambda^*)$$
 duality gap 특성에 의해 $-L^{CLIP}(\theta^*) - p^* \leq rac{m}{t}$

Performance Guarantee Bound

그래서 결론의 의미가 뭔가요?
$$-L^{CLIP}\left(\theta^{*}\right)-p^{*}\leq \frac{m}{t}$$

the gap between the optimal value of the original constrained problem with clipped surrogate function (Eq. (7)) and IPO (Eq. (8)) is bounded by m/t

즉, PPO의 최적화 문제-Eq. (7)와 IPO의 최적화 문제-Eq. (8)을 사용한 결과값 간의 차이가 일정한 한계 내에서 유지된다는 것을 의미. 이는 두 방법을 사용할 때 최적 해의 성능 차이가 매우 크지 않음(bounded)을 보장함

검증된 Theorem1으로 알 수 있는 것은?

더 큰 t 값이 원래의 목표 함수에 대한 더 나은 근사를 제공한다는 것을 알 수 있다.

- Larger t, Higher reward and cost, BUT Lower convergence rate
- 이러한 단조성(monotonicity)을 이용하여, 수렴 속도와 최적화 성능 사이의 균형을 맞출 수 있는 적절한 t 값을 찾기 위해 이진 탐색 알고리즘(binary search)을 사용할 수 있게 됨

$$J_{C_{m{i}}}^{\pi_{m{ heta}}} = \mathbb{E}_{ au \sim \pi_{m{ heta}}} \left[\sum_{t=0}^{\infty} \gamma^t C\left(s_t, a_t, s_{t+1}
ight)
ight] \qquad J_{C_{m{i}}}^{\pi_{m{ heta}}} = \mathbb{E}_{ au \sim \pi_{m{ heta}}} \left[rac{1}{T} \sum_{t=0}^{T-1} C\left(s_t, a_t, s_{t+1}
ight)
ight]$$

실험에서 확인할 수 있는 IPO의 장점(특성)

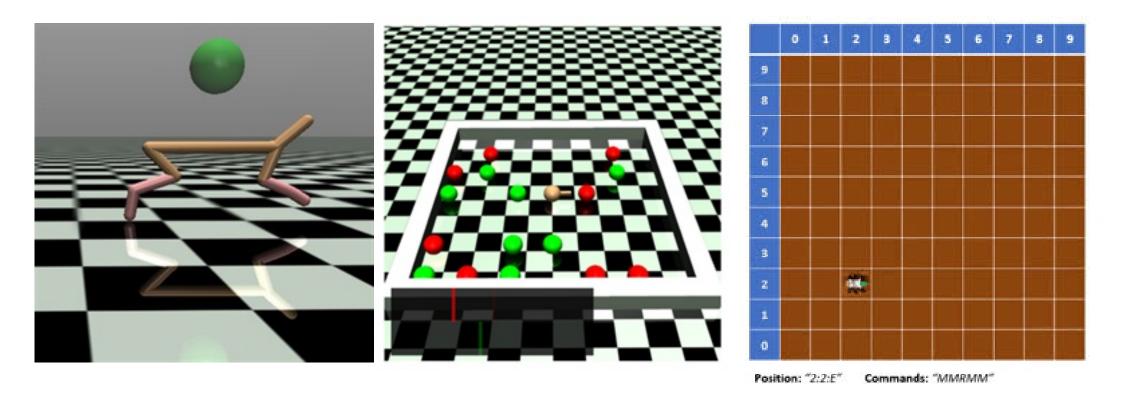
- can handle more general types of cumulative constraints including <u>discounted cumulative constraints</u> and <u>mean valued constraints</u>
- hyperparameter is easy to tune
- can be easily extended to handle optimizations with multiple constraints
- robust in stochastic environments

Baselines

- CPO Constrained Policy Optimization
- PDO Primal-dual optimization

Tasks

- Point-Gather, Point-Circle(Mujoco)
- HalfCheetah-Safe
- grid-world task



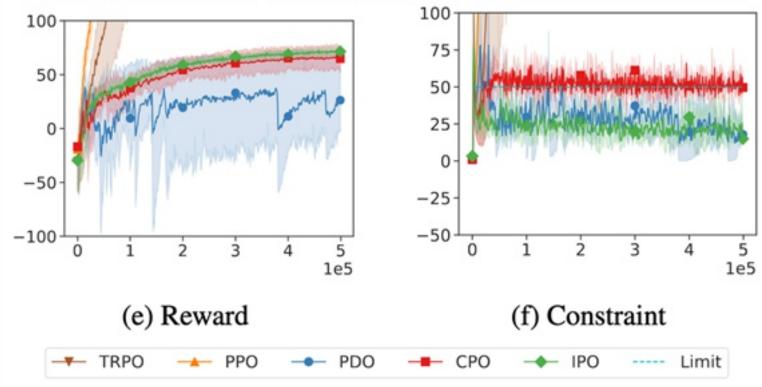
$$J_{C_{i}}^{\pi_{ heta}} = \mathbb{E}_{ au \sim \pi_{ heta}} \left[\sum_{t=0}^{\infty} \gamma^{t} C\left(s_{t}, a_{t}, s_{t+1}
ight)
ight]$$

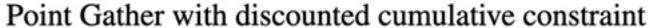
1 discounted cumulative constraints

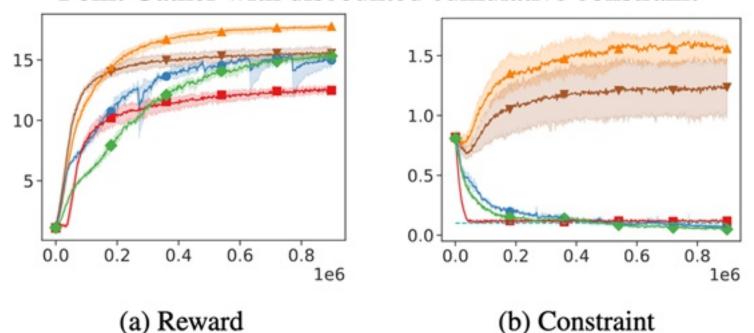
IPO vs. CPO

- IPO is best performance
- CPO converges faster than IPO
- CPO always stops improving when the constraint is satisfied
- IPO continues to search for a better policy even if the constraint is satisfied. Hence, it converges to a better reward and lower cost.

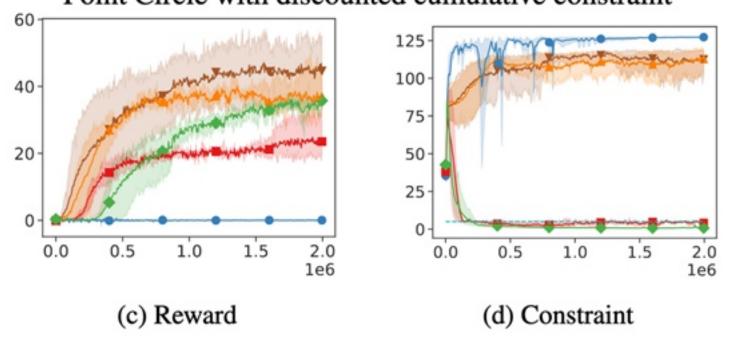
HalfCheetah-Safe with discounted cumulative constraint







Point Circle with discounted cumulative constraint

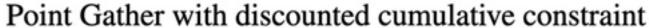


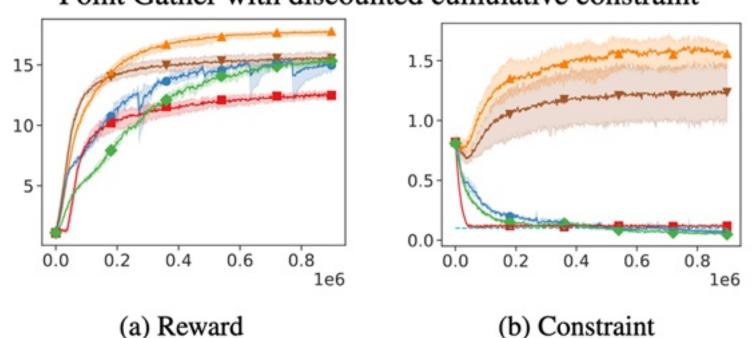
$$J_{C_{m{i}}}^{\pi_{m{ heta}}} = \mathbb{E}_{ au \sim \pi_{m{ heta}}} \left[\sum_{t=0}^{\infty} \gamma^t C\left(s_t, a_t, s_{t+1}
ight)
ight]$$

1 discounted cumulative constraints

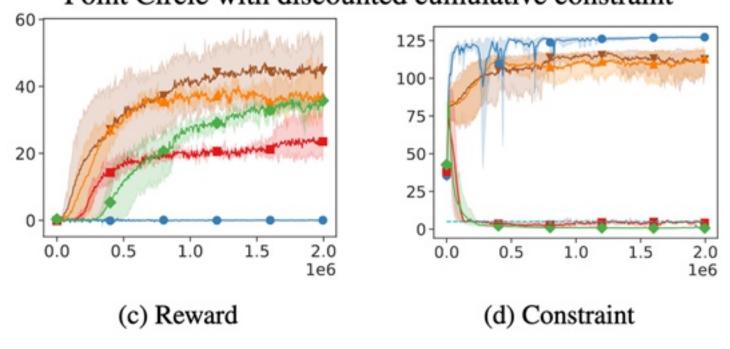
IPO vs. PDO

- PDO can converge to a policy as good as IPO, however, the variance of the performance during training is **high**
- PDO achieves a policy whose constraint value is lower than the limit, but the reward is the lowest as well.
- PDO is sensitive to the initialization of the Lagrange multiplier and learning rate





Point Circle with discounted cumulative constraint



$$\qquad \qquad J_{C_i}^{\pi_{\theta}} = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{\infty} \gamma^t C\left(s_t, a_t, s_{t+1}\right) \right]$$

1 discounted cumulative constraints

CPO vs. PPO / TRPO

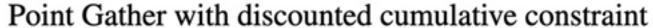
- PPOs consider the optimization without constraints.
- PPOs achieve higher rewards as well as violating the constraints more, compared to IPO, CPO and PDO

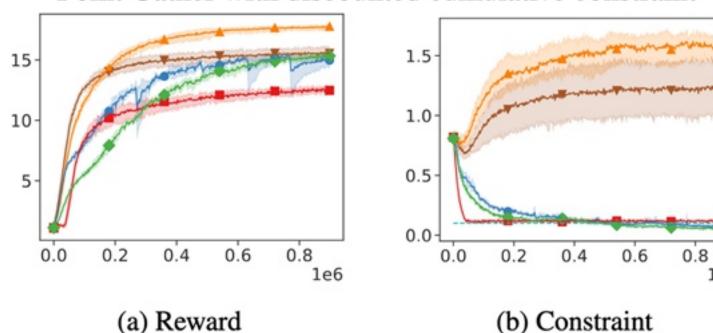
75 -25

HalfCheetah-Safe with discounted cumulative constraint

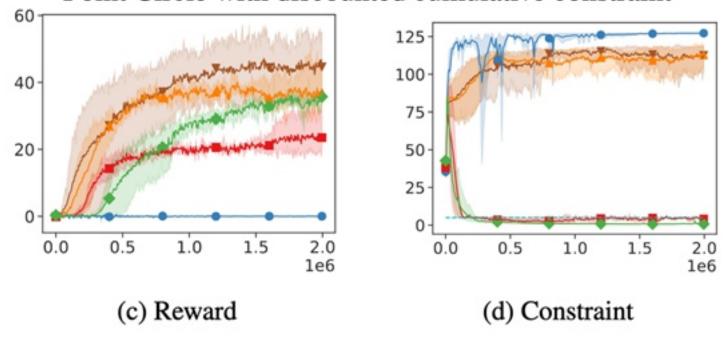
100

1e6





Point Circle with discounted cumulative constraint



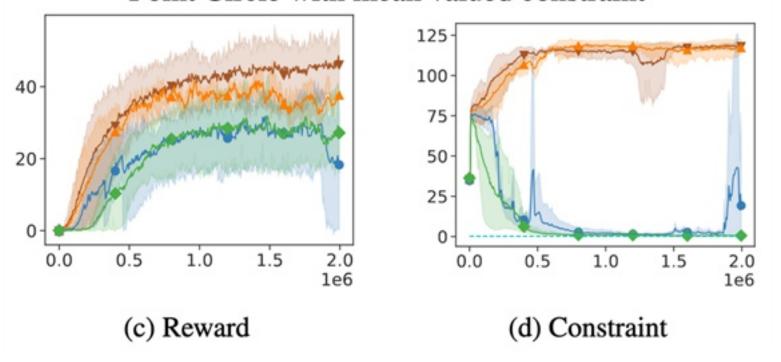
$$J_{C_{m{i}}}^{\pi_{m{ heta}}} = \mathbb{E}_{ au \sim \pi_{m{ heta}}} \left[rac{1}{T} \sum_{t=0}^{T-1} C\left(s_{t}, a_{t}, s_{t+1}
ight)
ight]$$

2 mean valued constraints

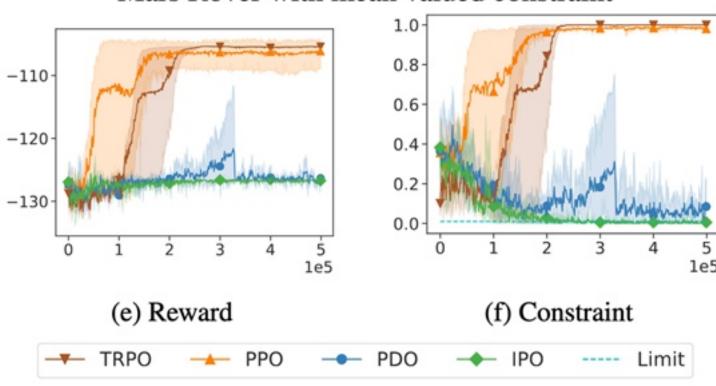
IPO vs. PDO

- IPO can consistently converge to a policy with high discounted cumulative reward and satisfy the mean valued constrains on all tasks.
- PDO, however, sometimes converges to a policy
 violating the constraints (Figure 3b) and has a higher
 variance during training (Figure 3d and Figure 3f)

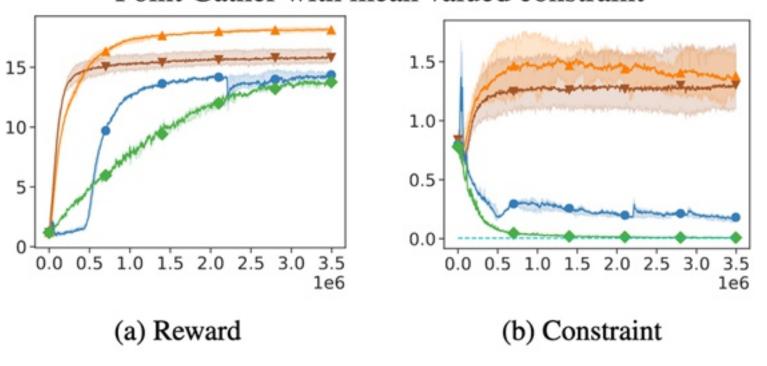
Point Circle with mean valued constraint



Mars Rover with mean valued constraint



Point Gather with mean valued constraint



3 Constraint Effects

- <u>loosen the constraint</u> in Point Gather with a larger threshold, to be 1
 - Point agent can collect at most one bomb on average in each play
 - o 평균적으로 1개 이하의 bomb 수집
- so loose that the performance of the constrained optimization is equivalent to the unconstrained one.
- CPO still increases its cost to reach the constraint 1, which is even worse than the randomly initialized policy
 - CPO always makes efforts to push its cost to the constraint threshold
- IPO keeps decreasing its cost after the constraint is satisfied
- CPO is around 1 and the number for IPO is around 0.25

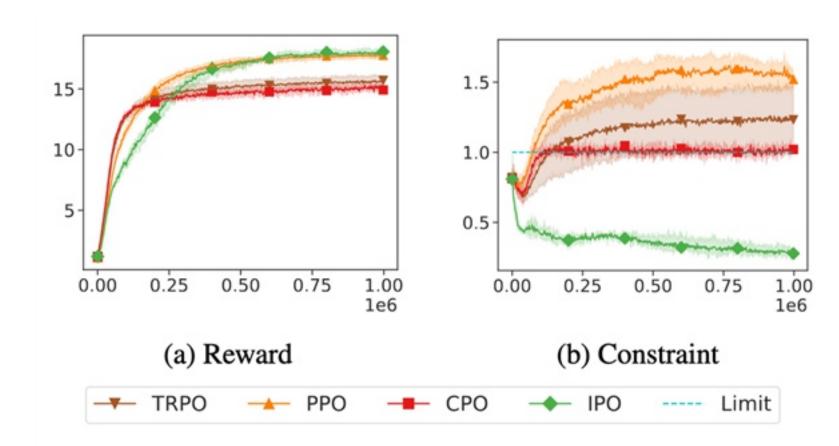


Figure 4: Average performance of TRPO, PPO, CPO and IPO under constraint limit 1.

- 4 Hyperparameter Tuning
 - IPO hyperparameter t is easier to tune
 - Tuning the initial Lagrange multiplier and learning rate takes a lot of efforts in PDO
 - \circ PDO is **sensitive** to the initialization of the Lagrange multiplier λ from 0.01 to 0.1
 - PDO is affected by the learning rate which changes from 0.01 to 0.001. The smaller learning rate slows down the policy convergence pace
 - Reward and cost of IPO are positively correlated with the hyperparameter t
 - Binary search가 가능한 이유
 - higher reward and cost with larger t

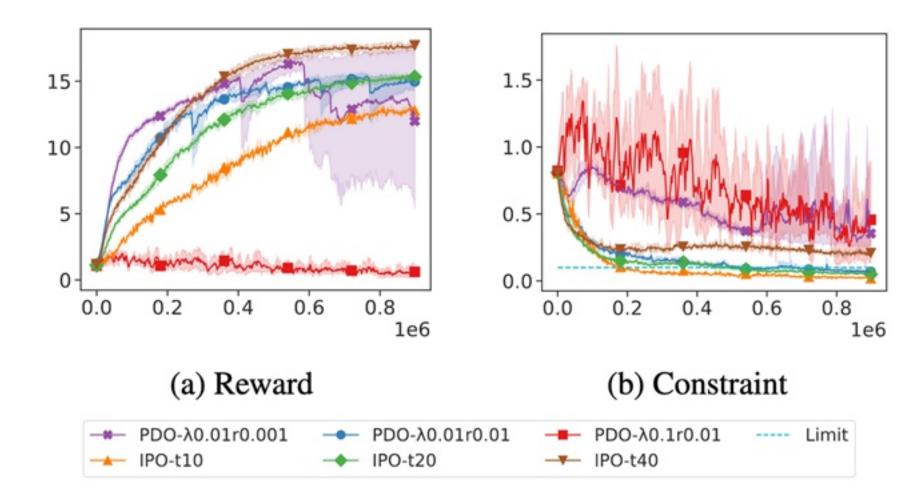


Figure 5: Average performance of PDO and IPO with different hyperparameters.

5 Multiple Constraints

- IPO에서 constraint를 추가하고 싶다면 logarithm barrier function을 이용해서 term을 추가하기만 하면 됨
 CPO보다 쉬움
- constraint에 해당하는 ball의 타입을 추가하여 constraint를 여러개로 만들어서 Point-Gather 실험
 - 1. two apples, three bomb balls (0.04), five mine balls (0.06);
 - 2. two apples, four bomb balls (0.05), four mine balls (0.05);
 - 3. two apples, eight bomb balls (0.1), eight mine balls (0.1);

*()안에 있는 값들은 한 번의 플레이에서 모을 수 있는 해당 공 의 최대 기대값에 대한 제약 조건

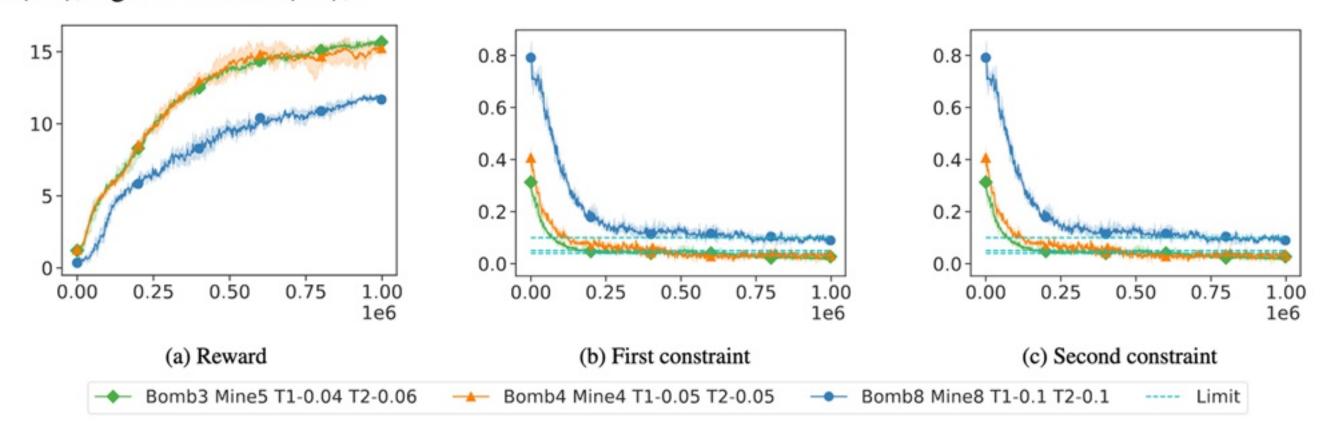


Figure 6: Average performance of IPO under multi-constraints. T1 and T2 correspond to the limits in (b) and (c) separately. The dash lines are limits for different task settings

6 Stochastic Environment Effects

- in real-world scenarios, there is always uncertainty from the environment
 - the outcome of an action is **affected by random noise**
- action: 속도(velocity)와 진행(heading) 방향의 vector로
 -1~1 사이의 값으로 정의
- action에 평균 0 분산 각각 0.2, 0.5, 1.0으로 random noise를 추가
- 0.5일때도 학습이 수렴하는 것을 확인할 수 있었음

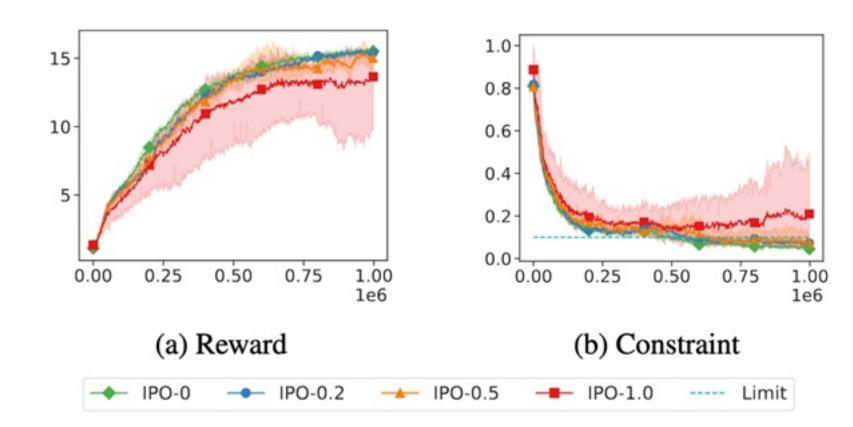


Figure 7: Average performance of IPO under different noise scale. IPO-0 means no noise is added.

END