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Introduction
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Introduction
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Preliminaries

Constrained Markov Decision Process (CMDP)

M) rewardd PR w5t constraint O S X A X S — R

several cost functions 5 =f (O (30, ao, 31)), oo, O (3m Ay, 3n+1)) (n:transition %, t-th)

constraint limits €1y s+« 9 €m (m:constraint £5& 11514 i-th)

Expectation over a constraint gf = ETNM [C,]
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t=0

T-1

1 .

J 1:" = Ermm, T E C (st,a¢,8:41)| mean valued constraint
t=0

S.t.

Goal

maon;”
J <€




Preliminaries

Policy Gradient Methods

gradient of the objective

s.t.

Goal

maxg J g’
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Trust Region Policy Optimization (TRPO)

max LTRPO(Q) = E, [ mo(a¢|st) At]
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Proximal Policy Optimization (PPO)
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Trust Region Policy Optimization (TRPO) Proximal Policy Optimization (PPO)
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Interior-point Policy Optimization

Problem Deifinition

maa.xLCLIP () rro9) =4

S.t. Jgf < €;
L THe __ TT
Jo, = Jg, — €

) 0 Jy<o
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Indicator Function [ (fg
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logarithmic barrier function Srg C;
. differentiable approximation of JC,’ T

the indicator function
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Constraint values

The larger t is, the better the
approximation is to the indicator function



Interior-point Policy Optimization

LA ’3=]% IPO2| objective Function Algorithm 1 The procedure of IPO
Input: Initialize policy m with parameter 8 = 6. Set the
max L179(0) hyperparameter r for PPO clip rate and ¢ for logarithmic bar-
6 _ rier function
Output: The policy parameters ¢
7.1PO (g — 7 CLIP g ( jvro)
(6) (6)+ Z ¢ Ci 1: Initialize the computational graph structure.

i=1

2: for iteration k=0,1,2.... do

3.  Sample N trajectories 71, ..., 7n Including observa-
tions, actions, rewards and costs under the current
policy 6

4:  Process the trajectories to advantages, constraint val-
ues, etc

5.  Update the policy p ith first order optimizer
Or+1 = O + vg‘LIPO(G) lehere « is learning rate
based on the processed trajectories.

6: end for
7: return policy parameters 6 = 0y 1




Performance Guarantee Bound
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Performance Guarantee Bound

m
H & : = 1 ! L
ng D]Tl__—‘—?“ Optlmal 0 * = EHC]):]‘I _VLCLIP (9*) _l_ Z ’\’ra* V.jhc’;:* — 0 Y= lOg(_(B) =>y = —;
AN=-—
t x Jg
m Y ot
—VLOHP (6*) + Y "N VJIG =0 Astaln v B o2 Frie} 52
i=1 Ai =]
T3 dual function2 Ay = A] &
m
g(A) = —LOP(0") + Y _ NI
+=1 ]
_ _TCLIP (gxy _ M
=L -4 N =-—
t x Jg

p* > g(A*) duality gap =40 915 —LOUP (9*) — p* <



Performance Guarantee Bound

t

the gap between the optimal value of the original constrained problem with
clipped surrogate function (Eq. (7)) and IPO (Eq. (8)) is bounded by m/t

LA BES] A -ETIR? _ roLIp (6*) — p* < m

Z, PPOC] A3} &A|-Eq. (7)<} IPOS] A3} HA-Eq. (8)& AHESE Bt 7He] &}o]
AXSE SHA| oA SR H T e RS 9v], o] = F WS AL wff FA sh9] A5 A
OI7F mll-% =2A] &= (bounded)= 7439t
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e Larger t, Higher reward and cost, BUT Lower convergence rate
e O3t T2/d(monotonicity)& ©-8-5F, 8 SE9F A5t 5 AolY] da Bhe = e A= t U= 21 715
ojF] & &y 2J& (binary search)2 A& 4= YA ¥
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Expe ri ments Jﬂ: = Erwzra i ’th (st, at, 8t+1)] -r~1r9 [T Z C (Sta ag, 3t+1)]

t=0 t=0
AAoA Zeldd = = TPO9 BH(54)

T AT

e can handle more general types of cumulative constraints including discounted cumulative constraints and

mean valued constraints

e hyperparameter is easy to tune
e can be easily extended to handle optimizations with multiple constraints
e robust in stochastic environments

Baselines
e CPO - Constrained Policy Optimization
e PDO - Primal-dual optimization

Dlilillﬂ El?!&

Tasks
e Point-Gather, Point-Circle(Mujoco)
e HalfCheetah-Safe
e grid-world task

esition: “F.1:E” Commands: “WAMARELRL"



t=0

EXpe ri ments Jgf = IE-erg i 'YtC (3ta at, 3t+1)]

BB discounted cumulative constraints

IPO vs. CPO
e [PO is best performance
e CPO converges faster than IPO
e CPO always stops improving when the constraint is satisfied
e [PO continues to search for a better policy even if the
constraint is satisfied. Hence, it converges to a better
reward and lower cost.

Point Gather with discounted cumulative constraint
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HalfCheetah-Safe with discounted cumulative constraint
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Point Circle with discounted cumulative constraint
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(d) Constraint



t=0

EXpe ri ments Jgf = IE-erg i 'YtC (3ta at, 3t+1)]

BB discounted cumulative constraints

IPO vs. PDO
e PDO can converge to a policy as good as IPO, however, the
variance of the performance during training is high
e PDO achieves a policy whose constraint value is lower than
the limit, but the reward is the lowest as well.
e PDO is sensitive to the initialization of the Lagrange
multiplier and learning rate

Point Gather with discounted cumulative constraint
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(a) Reward (b) Constraint

HalfCheetah-Safe with discounted cumulative constraint
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Point Circle with discounted cumulative constraint
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t=0

EXpe ri ments Jgf = IE-erg i 'YtC (3ta at, 3t+1)]

HalfCheetah-Safe with discounted cumulative constraint
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CPO vs. PPO / TRPO
e PPOs consider the optimization without constraints.

ﬂ._

_E_U_

e PPOs achieve higher rewards as well as violating the A
: =100 T . v . : =50- . . T . :
constraints more, compared to IPO, CPO and PDO 0 1 2 3 4 5 o 1 2 3 4 5
(e) Reward (f) Constraint
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Experiments

1 T-1
Jﬂf = ETNM T Z C’(st, ag, 8t+1)

F3 mean valued constraints t=0

IPO vs. PDO
e IPO can consistently converge to a policy with high
discounted cumulative reward and satisfy the mean
valued constrains on all tasks.
e PDO, however, sometimes converges to a policy
violating the constraints (Figure 3b) and has a higher
variance during training (Figure 3d and Figure 3f)

Point Circle with mean valued constraint
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(c) Reward (d) Constraint

CPO does not support mean valued constraints

Mars Rover with mean valued constraint
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Experiments

K} Constraint Effects

loosen the constraint in Point Gather with a larger

threshold, to be 1
o Point agent can collect at most one bomb on average in
each play
o WAH 2 17 o15H9] bomb 4]
so loose that the performance of the constrained
optimization is equivalent to the unconstrained one.
CPO still increases its cost to reach the constraint 1,
which is even worse than the randomly initialized policy
o CPO always makes efforts to push its cost to the
constraint threshold
IPO keeps decreasing its cost after the constraint is
satisfied
CPO is around 1 and the number for IPO is around 0.25

13

10+

000 025 050 075 1.00
1e6

(a) Reward (b) Constraint

—¥— TRPO a— PPO —a— CPO —4— |PO ---== Limit

Figure 4: Average performance of TRPO, PPO, CPO and
IPO under constraint limit 1.



Experiments

L3 Hyperparameter Tuning

e IPO hyperparameter t is easier to tune
e Tuning the initial Lagrange multiplier and learning
rate takes a lot of efforts in PDO
o PDO is sensitive to the initialization of the
Lagrange multiplier A from 0.01 to 0.1
o PDO 1s affected by the learning rate which changes
from 0.01 to 0.001. The smaller learning rate slows
down the policy convergence pace
e Reward and cost of IPO are positively correlated
with the hyperparameter t
o Binary search’} 7t&SF O]
o higher reward and cost with larger t

151

10+

00 02 04 06 0.8 00 02 04 06 0.8

leb le6
(a) Reward (b) Constraint
#— PDO-AD.01r0.001 o— PDO-A0.01r0.01 —&— PDQ-A0.1r0.01 Limit
&— |PO-t10 +— |PO-t20 —¥— |PO-t40

Figure 5: Average performance of PDO and IPO with differ-
ent hyperparameters.



Experiments

3 Multiple Constraints
o [POOJA] constraintE F7Fotal At logarithm barrier functiong ©]-8siA term< F7FsH7| 2 5HH =
o CPOET} 48
e constraint®]| s ol ball@] E}US =71519] constraintE o2& YF=9]A] Point-Gather A<
1. two apples, three bomb balls (0.04), five mine balls (0.06);

(ol &= =2 29 SN B2 5 U=

2. two apples, four bomb balls (0.05), four mine balls (0.05); o] Hoj T|thTtol T3k M =

&[1

cf 2
2L
O O

3. two apples, eight bomb balls (0.1), eight mine balls (0.1);

(a) Reward (b) First constraint (c) Second constraint

#— Bomb3 Mine5 T1-0.04 T2-0.06 &«— Bomb4 Mined4 T1-0.05 T2-0.05 —8— Bomb8 Mine8 T1-0.1 T2-0.1 Limit

Figure 6: Average performance of IPO under multi-constraints. T1 and T2 correspond to the the limits in (b) and (c) separately.
The dash lines are limits for different task settings



Experiments

I3 Stochastic Environment Effects

e in real-world scenarios, there is always uncertainty from

the environment = "
o the outcome of an action is affected by random noise 10

o action: &% (velocity)2} 718l (heading) ¥WaFe| vector=

-1~1 Aol gro o i
e action®] H++ 0 E4F 1+ 0.2, 0.5, 1.0°2.2 random noise= et

ZI.S__”_ 1leb
¢ 0.5 Bh50] $BHE HE FAT 5 S (@ Reward (b) Constraint

+— IPO-0 —e— |PO-0.2 +— |PO-0.5 —&— |PO-1.0 Limit

Figure 7: Average performance of IPO under different noise
scale. IPO-0 means no noise is added.






